Minimax Binary Classifier Aggregation with General Losses
نویسندگان
چکیده
We address the problem of aggregating an ensemble of predictors with known loss bounds in a semi-supervised binary classification setting, to minimize prediction loss incurred on the unlabeled data. We find the minimax optimal predictions for a very general class of loss functions including all convex and many non-convex losses, extending a recent analysis of the problem for misclassification error. The result is a family of semi-supervised ensemble aggregation algorithms which are as efficient as linear learning by convex optimization, but are minimax optimal without any relaxations. Their decision rules take a form familiar in decision theory – applying sigmoid functions to a notion of ensemble margin – without the assumptions typically made in margin-based learning.
منابع مشابه
Optimal Binary Classifier Aggregation for General Losses
We address the problem of aggregating an ensemble of predictors with known loss bounds in a semi-supervised binary classification setting, to minimize prediction loss incurred on the unlabeled data. We find the minimax optimal predictions for a very general class of loss functions including all convex and many non-convex losses, extending a recent analysis of the problem for misclassification e...
متن کاملOptimally Combining Classifiers Using Unlabeled Data
We develop a worst-case analysis of aggregation of classifier ensembles for binary classification. The task of predicting to minimize error is formulated as a game played over a given set of unlabeled data (a transductive setting), where prior label information is encoded as constraints on the game. The minimax solution of this game identifies cases where a weighted combination of the classifie...
متن کاملOptimal Oracle Inequality for Aggregation of Classifiers Under Low Noise Condition
We consider the problem of optimality, in a minimax sense, and adaptivity to the margin and to regularity in binary classification. We prove an oracle inequality, under the margin assumption (low noise condition), satisfied by an aggregation procedure which uses exponential weights. This oracle inequality has an optimal residual: (logM/n) where κ is the margin parameter, M the number of classif...
متن کاملLearning to Abstain from Binary Prediction
A binary classifier capable of abstaining from making a label prediction has two goals in tension: minimizing errors, and avoiding abstaining unnecessarily often. In this work, we exactly characterize the best achievable tradeoff between these two goals in a general semi-supervised setting, given an ensemble of predictors of varying competence as well as unlabeled data on which we wish to predi...
متن کاملOn Minimaxity of Follow the Leader Strategy in the Stochastic Setting
We consider the setting of prediction with expert advice with an additional assumption that each expert generates its losses i.i.d. according to some distribution. We first identify a class of “admissible” strategies, which we call permutation invariant, and show that every strategy outside this class will perform not better than some permutation invariant strategy. We then show that when the l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1510.00452 شماره
صفحات -
تاریخ انتشار 2015